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Abstract
In this paper we rigorously prove some statements on the symbolic dynamics
for Bernoulli coupled map lattices studied by Kawasaki and Sasa. The
advantage of our approach is that it is purely topological and it gives a
simultaneous proof for the statements.

PACS numbers: 05.45.Jn, 05.45.Ra

1. Introduction

The objective of this paper is to give a rigorous proof for a numerically verified statement in
a paper by Kawasaki and Sasa on the statistics of the Bernoulli coupled map lattices [KS]. In
their paper, given a periodic symbol sequence [s], they have obtained a unique periodic orbit of
a coupled map lattice. However, their argument did not show that its itinerary coincides with
[s] (they checked this coincidence for 106 symbol sequences by numerical computation). The
argument in the present paper gives simultaneously a proof of (i) the existence of a periodic
orbit, (ii) its uniqueness and (iii) the coincidence of its itinerary with [s], for a given periodic
symbol sequence [s]. The proof uses some elementary facts on fixed point theorems for
continuous maps of the interval à la Sharkovskii theorem.

2. Bernoulli coupled map lattices

We consider the Bernoulli coupled map lattice proposed by Sakaguchi [Sa]:

F : ([−1, 1] × [−1, 1])N −→ ([−1, 1] × [−1, 1])N ,

where F((x0,�0), . . . , (xN−1,�N−1)) = (f (x0,�0), . . . , f (xN−1,�N−1)) is

f (xi,�i) ≡
(

2(xi + si)

1 + si�i

− si, tanh

[
k

2
(si−1 + si+1)

])
,

and k is a positive parameter.
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The multi-valued itinerary map

π : ([−1, 1] × [−1, 1])N −→ {+1,−1}N
is given by π((x0,�0), . . . , (xN−1,�N−1)) ≡ (s0, . . . , sN−1), where

si ≡
{

+1 (−1 � xi � �i � 1),
−1 (−1 � �i � xi � 1).

Here, note that the definition of the region {−1 � xi � �i � 1} corresponding to si = +1
is modified from that in [KS] so that it becomes a compact set. This is the reason why our
itinerary map becomes multi-valued. However, the definition of the itinerary coincides with
the previous one whenever a periodic orbit does not touch the diagonal {x = �}.

We write Xn+1 = F(Xn) for Xn = ((
xn

0 ,�n
0

)
, . . . ,

(
xn

N−1,�
n
N−1

))
and [s] =

(s0, . . . , sp−1) ∈ ({+1,−1}N)p. Our main claim in this paper is

Theorem 2.1. Given a set of p symbol sequences [s] ∈ ({+1,−1}N)p, there exists a unique
X0 ∈ ([−1, 1] × [−1, 1])N so that f p(X0) = X0 and [s] = (π(X0), . . . , π(Xp−1)).

This theorem gives not only the existence and the uniqueness of a periodic orbit (which
has been already shown in [KS]) but also the coincidence of its itinerary with a given periodic
symbol sequence [s].

3. Fixed point theorems on the interval

We here summarize some preliminary results on fixed point theorems for continuous maps of
the interval. Let I ⊂ R be a closed interval and f : I → R be a continuous map. Given two
subintervals J1 ⊂ I and J2 ⊂ R, we say that J1 covers J2 by f if f (J1) ⊃ J2 holds. Our first
basic observation is as follows.

Lemma 3.1. Assume that f : I → R is continuous. If I covers itself by f , i.e. f (I) ⊃ I , then
there exists x0 ∈ I so that f (x0) = x0. Moreover, if f is C1 and |f ′(x)| > 1 for all x ∈ I ,
then such fixed point x0 is unique.

Proof. Let us write I = [α, β]. Since I covers itself by f , both A = f −1(α) and B = f −1(β)

are non-empty subset of I. Take a ∈ A and b ∈ B. Without loss of generality, we may
assume that a < b. Define g(x) = f (x) − x. Then g(a) = f (a) − a = α − a � 0 and
g(b) = f (b)− b = β − b � 0. By the intermediate value theorem, there is x0 ∈ [a, b] so that
g(x0) = x0, i.e. f (x0) = x0.

Now assume that f is C1 and |f ′(x)| > 1 for all x ∈ I . If there were two distinct fixed
points of f in I, the mean value theorem would assert the existence of x1 ∈ I with f ′(x1) = 1,
a contradiction. �

Lemma 3.2. Assume that f : I → R is continuous. Let J be a closed subinterval of R. If I
covers J by f , then there exists a subinterval K ⊂ I so that f (K) = J .

Proof. Let us write J = [α, β]. Since I covers J by f , both A = f −1(α) and B = f −1(β)

are non-empty subset of I. Evidently, A and B are disjoint and compact in I, thus
d0 ≡ d(A,B) > 0. Moreover, there are a ∈ A and b ∈ B so that d0 = d(a, b). Without loss
of generality, we may assume that a < b. Put K ≡ [a, b]. Then, f (K) ⊃ J follows from the
intermediate value theorem since f (a) = α and f (b) = β. If there were c ∈ (a, b) so that
f (c) � β, then there would be an element of B in (a, c] by the intermediate value theorem.
However, the open interval (a, b) should be disjoint from both A and B by the definition of
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d0 = d(A,B), a contradiction. Thus, for all c ∈ (a, b) we have f (c) < β. A similar argument
shows that f (c) > α for all c ∈ (a, b). This implies f (K) ⊂ J . �

By using this fact, the first lemma can be extended to a non-autonomous periodic case in
the following way.

Proposition 3.3. Assume that there exists a sequence of closed subintervals J0, J1, . . . , Jp ≡
J0 of I and a sequence of continuous maps fi : Ji → R such that Ji covers Ji+1 by fi

for i = 0, 1, . . . , p − 1. Then, there exists x0 ∈ J0 so that fp−1 ◦ · · · ◦ f0(x0) = x0 and
fi−1 ◦ · · · ◦ f0(x0) ∈ Ji for i = 1, 2, . . . , p. Moreover, if fi is C1 and |f ′

i (x)| > 1 for all
x ∈ Ji and all i, then such point x0 is unique.

Proof. First consider fp−1 : Jp−1 → R. Since Jp−1 covers Jp = J0 by fp−1, there is a
closed subinterval Kp−1 ⊂ Jp−1 so that fp−1(Kp−1) = J0 by lemma 3.2. Since Jp−2 covers
Jp−1 by fp−2 and since Kp−1 ⊂ Jp−1, there is a closed subinterval Kp−2 ⊂ Jp−2 so that
fp−2(Kp−2) = Kp−1, thus fp−1 ◦ fp−2(Kp−2) = J0. We can inductively find a sequence of
closed subintervals Kj ⊂ Ji so that fi(Ki) = Ki+1, thus fp−1 ◦ · · · ◦ fp−n(Kp−n) = J0. In
particular, one gets fp−1 ◦ · · · ◦ f0(K0) = J0 ⊃ K0, and this means that K0 covers itself by
fp−1 ◦· · ·◦f0. By lemma 3.1, we know the existence of x0 ∈ K0 with fp−1 ◦· · ·◦f0(x0) = x0.
By the construction of Ki , it also follows that fi−1 ◦· · ·◦f0(x0) ∈ Ki ⊂ Ji for i = 1, 2, . . . , p.
If fi is C1 and |f ′

i (x)| > 1 for all x ∈ Ji , then
⋂p−1

i=0 f −1
0 ◦ · · · ◦ f −1

i−1(Ji) becomes a
closed interval. Now, the uniqueness part can be proved as in lemma 3.1, and hence we are
done. �

4. Proof of theorem 2.1

Assume that a number p and symbol sequences [s] are given and fixed. As was pointed
out by [KS], the sequences [s] uniquely determine as �n

i = tanh
[

k
2 (si−1 + si+1)

]
for

n = 0, 1, . . . , p − 1 and i = 0, 1, . . . , N − 1. This in particular means that our task is
to study the iteration of a family of one-dimensional maps:

fn(·) ≡ f
(·,�n

i

)
: [−1, 1] × {

�n
i

} −→ R × {
�n+1

i

}
(n = 0, 1, . . . , p − 1) for each i, where �n

i and �n+1
i are fixed. Note that, since p and N

are finite, there exists ε > 0 independent of n and i so that the distance between �n
i and the

boundary {−1, 1} = ∂[−1, 1] is at least ε.
Put T+1 = {(x,�) : −1 � x � � � 1} and T−1 = {(x,�) : −1 � � � x � 1}, and let

Iσ (δ) = Tσ ∩ {� = δ} (σ = +1,−1) be a closed interval. We first show that Isi
(δ) covers

Is ′
i
(δ′) by f (·, δ) : Isi

(δ) → Is ′
i
(δ′) for any choice of si and s ′

i , where δ′ = tanh[ k
2 (si−1 + si+1)].

To see this, assume first that si = +1. Then, the x-coordinate of f (−1, δ) is computed as

2(x + si)

1 + siδ
− si = 2(−1 + 1)

1 + δ
− 1 = −1

for −1 � δ � 1. Similarly, the x-coordinate of f (δ, δ) is

2(x + si)

1 + siδ
− si = 2(δ + 1)

1 + δ
− 1 = 1

for −1 � δ � 1. This shows the desired claim for the case si = +1. The case
si = −1 is similar. Now we apply proposition 3.3 to get an initial point x0

i so that
fp−1 ◦ · · · ◦ f0

(
x0

i

) = x0
i and fj−1 ◦ · · · ◦ f0

(
x0

i

) ∈ Isj
(δ′

j ) for j = 1, 2, . . . , p. By
putting X0 ≡ ((

x0
0 ,�0

0

)
, . . . ,

(
x0

N−1,�
0
N−1

))
, this means that f p(X0) = X0 and [s] ∈

(π(X0), . . . , π(Xp−1)).
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If we return to the original definition {−1 � xi < �i � 1} of the region corresponding
to si = +1, then the orbit of a point in the diagonal by f becomes (δ0, δ0) 	→ (−1, δ1) 	→
(−1, δ2) 	→ · · · , which cannot be periodic (note that |δ1| < 1, so the point (−1,−1) is
not periodic). Thus, any periodic point does not touch the diagonal and we conclude that
[s] = (π(X0), . . . , π(Xp−1)).

As already remarked, once p and [s] are fixed, there exists ε > 0 so that �n
i ∈

[−1 + ε, 1 − ε] for all n and i. Hence,∣∣∣∣ ∂

∂x
f1(x,�n

i )

∣∣∣∣ =
∣∣∣∣ 2

1 + si�
n
i

∣∣∣∣ � 2

2 − ε
> 1,

where f1(x,�n
i ) = 2(xi+si )

1+si�i
− si is the x-coordinate of f

(
x,�n

i

)
. We can now apply the

uniqueness part of proposition 3.3 to finish the proof of theorem 2.1.

Remark 4.1. Since the proof of proposition 3.3 is purely topological and does not depend on
the specific form of the Bernoulli coupled map lattice, one can apply proposition 3.3 for more
general class of systems to obtain a similar result as theorem 2.1.
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